

DDSIM Level 3: Damage Science

Jacob D. Hochhalter, NASA Langley

DDSIM Level 3 Objective

To better understand and prognose the <u>distribution of fatigue</u> <u>behavior</u> as it relates to inherent material inhomogeneities.

Microstructurally Small Fatigue Cracking

Identify and isolate key microstructure features

Microstructure-Replication Modeling

4 never nucleated Why?

HPC enables simulation of microstructural mechanics: necessary to develop models that describe observed variability

Compare & Contrast Results

Nucleated

Did Not Nucleate

Validating Computed Results

Comparing simulation results with recent measurements provides validation and corrects errors in previous models

Semi-Empirical Nucleation Model

The stress required to drive nucleation reduces with accumulation of slip

HPC simulation of several microstructures led to a model that describes observed variability

Implement Semi-Empirical Cracking Models

Improved Fidelity with Damage Science

Complex alloys Simplified (cleaner) single/bi- crystals

High resolution VIC 2D ® in ESEM

Displacement resolution = O(10 nm) Strain resolution = 10⁻⁴

Improved Fidelity with Damage Science

Secondary Electron Image of Crack Tip in NiAl Crimp et al.

Dislocation-Precipitate Interaction Warner et al.

Water-Crack Surface Interaction Kelly et al.

Crack–Grain Boundary Interaction Yamakov et al.